import pandas as pd import numpy as np from sklearn.model_selection import train_test_split, KFold from sklearn.preprocessing import MinMaxScaler, LabelEncoder, MaxAbsScaler from sklearn.metrics import mean_squared_error from sklearn.gaussian_process import GaussianProcessRegressor from sklearn.preprocessing import PolynomialFeatures import optuna import datetime import warnings warnings.filterwarnings('ignore')
poly = PolynomialFeatures(degree=2, include_bias=False)
def RMSE(x, y): return np.sqrt(mean_squared_error(x, y))
path = './_data/dacon_cal/' path_save = './_save/dacon_cal/' path_save_min = './_save/dacon_cal/min/'
train_csv = pd.read_csv(path + 'train.csv', index_col=0).drop(['Weight_Status'], axis=1) test_csv = pd.read_csv(path + 'test.csv', index_col=0).drop(['Weight_Status'], axis=1) submit_csv = pd.read_csv(path + 'sample_submission.csv', index_col=0)
x = train_csv.drop(['Calories_Burned'], axis=1) y = train_csv['Calories_Burned']
x['Height(inch)'] = 12x['Height(Feet)']+x['Height(Remainder_Inches)'] test_csv['Height(inch)'] = 12test_csv['Height(Feet)']+test_csv['Height(Remainder_Inches)']
x['BMI'] = (703x['Weight(lb)']/x['Height(Feet)']**2) test_csv['BMI'] = (703test_csv['Weight(lb)']/test_csv['Height(Feet)']**2)