# x는 1개
# y는 3개
import numpy as np
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
#1. 데이터
x = np.array([range(10)])
print(x.shape) # (3, 10)
x = x.T #(10,3)
y = np.array([[1,2,3,4,5,6,7,8,9,10],
[1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9],
[9,8,7,6,5,4,3,2,1,0]]) # (3, 10)
y = y.T # (10, 3)
# 예측 : [[9]] - 예상 y 값 [[10, 1.9, 0]]
#2. 모델구성
model=Sequential()
model.add(Dense(5, input_dim=1))
model.add(Dense(8))
model.add(Dense(12))
model.add(Dense(15))
model.add(Dense(17))
model.add(Dense(20))
model.add(Dense(30))
model.add(Dense(40))
model.add(Dense(50))
model.add(Dense(60))
model.add(Dense(70))
model.add(Dense(80))
model.add(Dense(90))
model.add(Dense(100))
model.add(Dense(90))
model.add(Dense(80))
model.add(Dense(70))
model.add(Dense(60))
model.add(Dense(50))
model.add(Dense(40))
model.add(Dense(30))
model.add(Dense(28))
model.add(Dense(26))
model.add(Dense(24))
model.add(Dense(20))
model.add(Dense(16))
model.add(Dense(12))
model.add(Dense(10))
model.add(Dense(8))
model.add(Dense(3))
#3. 컴파일 훈련
model.compile(loss='mse', optimizer='adam')
model.fit(x, y, epochs=60, batch_size=1)
#4. 평가, 예측
loss = model.evaluate(x, y)
print('loss :', loss)
result = model.predict([[9]])
print('[[9]]의 예측값 :', result)
#[[9,30,210]]의 예측값 : [[ 9.572913 -0.37402493 2.9108078 ]]
#[[9,30,210]]의 예측값 : [[ 9.764099 1.8662086 -0.12544721]]
#[[9]]의 예측값 : [[ 1.0000000e+01 1.9000008e+00 -2.7045608e-06]]
#[[9]]의 예측값 : [[10.000097 1.8985415 -0.01645362]]
#[[9]]의 예측값 : [[9.9999990e+00 1.9000005e+00 7.3015690e-07]]
#[[9]]의 예측값 : [[10.081713 1.9078078 -0.07697956]] 히든 레이어 5,8,12,15,17,20,25,28,32,35,38,32,28,26,25,24,20,16,12,10,8,3 에포 100 배치 1
#[[9]]의 예측값 : [[9.984226 1.9002553 0.02163446]] 위와같음
#[[9]]의 예측값 : [[10.051708 1.9035774 -0.0771008]]