from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.metrics import r2_score
#1. 데이터
x = np.array([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20])
y = np.array([1,2,4,3,5,7,9,3,8,12,13,8,14,15,9,6,17,23,21,20])
x_train, x_test, y_train, y_test = train_test_split(
x, y,
train_size=0.8,
shuffle=True,
random_state=730)
# x-> 앞의 두가지에 분리 y-> 뒤의 두가지에 분리
#2. 모델구성
model=Sequential()
model.add(Dense(3, input_dim=1))
model.add(Dense(8))
model.add(Dense(12))
model.add(Dense(16))
model.add(Dense(20))
model.add(Dense(16))
model.add(Dense(8))
model.add(Dense(1))
#3. 컴파일, 훈련
model.compile(loss='mae',optimizer='adam')
model.fit(x_train, y_train, epochs=100, batch_size=1)
#4. 평가, 예측
loss= model.evaluate(x_test, y_test)
print("loss :", loss)
y_predict = model.predict(x_test)
# R2= 결정 계수
r2 = r2_score(y_test,y_predict)
print('r2스코어 : ',r2)
#predict -> 훈련시키지 않은 데이터로 predict 해야한다.
#r2스코어 : 0.7904078020452765
#r2스코어 : 0.7973596338620206
#r2스코어 : 0.9831061633519333 train_size=0.8 random 1234
#r2스코어 : 0.9757829940377987
#r2스코어 : 0.9792923029118001
#r2스코어 : 0.9465548395651746 train_size=0.7 random 5
#r2스코어 : 0.9501073933674214
#r2스코어 : 0.9765971429445547 train_size=0.7 random 7