from sklearn.datasets import load_diabetes
import numpy as np
import pandas as pd
from tensorflow.python.keras.models import Sequential
from tensorflow.python.keras.layers import Dense
from sklearn.model_selection import train_test_split
from sklearn.metrics import r2_score, mean_squared_error
import matplotlib.pyplot as plt
from tensorflow.python.keras.callbacks import EarlyStopping
#1. 데이터
datasets = load_diabetes()
x = datasets.data
y = datasets.target
x_train, x_test, y_train, y_test = train_test_split(
x, y,
random_state=335,
train_size=0.9)
#2. 모델 구성
model=Sequential()
model.add(Dense(10, input_dim=10))
model.add(Dense(100, activation='relu'))
model.add(Dense(200, activation='relu'))
model.add(Dense(100, activation='relu'))
model.add(Dense(10, activation='relu'))
model.add(Dense(1))
#3. 컴파일, 훈련
model.compile(loss='mse', optimizer='adam')
es = EarlyStopping(monitor='val_loss',
patience=50,
mode='min',
verbose=1,
restore_best_weights=True)
hist = model.fit(x_train,y_train, epochs=1000, batch_size=10, validation_split=0.2,callbacks=[es])
print(hist.history)
#4. 평가, 예측
loss= model.evaluate(x_test, y_test)
print("loss :", loss)
y_predict=model.predict(x_test)
r2=r2_score(y_test , y_predict)
print("r2 :", r2)
plt.rcParams['font.family'] = 'Malgun Gothic'
plt.figure(figsize=(9, 6))
plt.title('디아벳스')
plt.plot(hist.history['loss'], c='red', marker='.', label='로스')
plt.plot(hist.history['val_loss'], c='blue', marker='.', label='발_로스')
plt.grid() #격자
plt.legend() #선에 대한 주석
plt.show()
# loss : 2619.177978515625
# r2 : 0.6809021467058503
# loss : 2664.231689453125
# r2 : 0.6754132455800013