import numpy as np
import pandas as pd
from tensorflow.python.keras.models import Sequential
from tensorflow.python.keras.layers import Dense
from tensorflow.python.keras.callbacks import EarlyStopping
from sklearn.model_selection import train_test_split
from sklearn.metrics import r2_score, mean_squared_error
import matplotlib.pyplot as plt
#1. 데이터
path = './_data/ddarung/'
path_save = './_save/ddarung/'
train_csv = pd.read_csv(path + 'train.csv', index_col = 0)
test_csv = pd.read_csv(path + 'test.csv', index_col = 0)
submission = pd.read_csv(path + 'submission.csv', index_col = 0)
# print(train_csv.isnull().sum())
train_csv = train_csv.dropna()
# print(train_csv.isnull().sum())
x = train_csv.drop(['count'], axis=1)
y = train_csv['count']
x_train, x_test, y_train, y_test = train_test_split(
x, y,
train_size=0.98,
random_state=321,
shuffle=True
)
# print(x_train.shape)
#2. 모델구성
model=Sequential()
model.add(Dense(50, input_dim=9))
model.add(Dense(30))
model.add(Dense(20))
model.add(Dense(10,activation='relu'))
model.add(Dense(1))
#3. 컴파일, 훈련
es = EarlyStopping(monitor='val_loss',
mode='min',
restore_best_weights=True,
patience=50,
verbose=1)
model.compile(loss = 'mse', optimizer='adam')
hist = model.fit(x_train, y_train,
epochs=1000,
batch_size=10,
verbose=1,
validation_split=0.2,
callbacks=[es])
#4. 평가, 예측
def RMSE(a, b) :
return np.sqrt(mean_squared_error(a,b))
loss = model.evaluate(x_test, y_test)
print('loss :', loss)
y_predict = model.predict(x_test)
r2 = r2_score(y_test, y_predict)
print('r2 :', r2)
rmse = RMSE(y_test, y_predict)
print('rmse :', rmse)
y_submit = model.predict(test_csv)
submission['count']=y_submit
submission.to_csv(path_save + 'submission333.csv')
# 시각화
plt.rcParams['font.family']= 'Malgun Gothic'
plt.figure(figsize=(9,6))
plt.title('개쩌는따릉이그래프')
plt.plot(hist.history['loss'],c='red', marker='.', label='로스')
plt.plot(hist.history['val_loss'],c='blue', marker='.', label='발_로스')
plt.grid()
plt.legend()
plt.show()
# loss : 3024.846923828125
# r2 : 0.536186690865533
# rmse : 54.998610288874765
# loss : 2885.412353515625
# r2 : 0.5472856240253858
# rmse : 53.71603522314404
# loss : 1714.6185302734375
# r2 : 0.7144258740372252
# rmse : 41.407950818712166