from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from tensorflow.python.keras.models import Sequential, Model
from tensorflow.python.keras.layers import Dense, Input
import numpy as np
from sklearn.preprocessing import MinMaxScaler, StandardScaler
#1. 데이터
datasets = load_boston()
x= datasets.data
y= datasets['target']
x_train, x_test, y_train, y_test = train_test_split (x,y,
train_size=0.8,
random_state=333,
)
scaler = StandardScaler()
# scaler.fit(x_train)
# x_train = scaler.transform(x_train)
x_train= scaler.fit_transform(x_train)
x_test = scaler.transform(x_test)
print(np.min(x_test), np.max(x_test))
#2. 모델
input1 = Input(shape=(13,))
dense1 = Dense(30)(input1)
dense2 = Dense(20)(dense1)
dense3 = Dense(10)(dense2)
output1 = Dense(1)(dense3)
model = Model(inputs=input1, outputs=output1)
model.save('./_save/keras26_1_save_model.h5') #모델을 저장하겠다. 모델 세이브의 확장자는 통상적으로 h5로한다.
# #3. 컴파일, 훈련
# model.compile(loss = 'mse', optimizer='adam',)
# model.fit(x_train,y_train,
# epochs=10,
# batch_size=32,
# verbose=1,
# )
# #4. 평가, 예측
# loss = model.evaluate(x_test, y_test)
# print('loss :', loss)