from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from tensorflow.python.keras.models import Sequential, Model, load_model #load 모델의 경로
from tensorflow.python.keras.layers import Dense, Input
import numpy as np
from sklearn.preprocessing import MinMaxScaler, StandardScaler
#1. 데이터
datasets = load_boston()
x= datasets.data
y= datasets['target']
x_train, x_test, y_train, y_test = train_test_split (x,y,
train_size=0.8,
random_state=333,
)
scaler = StandardScaler()
# scaler.fit(x_train)
# x_train = scaler.transform(x_train)
x_train= scaler.fit_transform(x_train)
x_test = scaler.transform(x_test)
print(np.min(x_test), np.max(x_test))
#2. 모델
model = load_model('./_save/keras26_3_save_model.h5') #저장된 모델의 구조만 불러옴
model.summary()
#3. 컴파일, 훈련
# model.compile(loss = 'mse', optimizer='adam',)
# model.fit(x_train,y_train,
# epochs=10,
# batch_size=32,
# verbose=1,
# )
#4. 평가, 예측
loss = model.evaluate(x_test, y_test)
print('loss :', loss)