import numpy as np
import time
from tensorflow.keras.preprocessing.image import ImageDataGenerator
path = "D:/study_data/_data/dog's_breed/"
save_path = "D:/study_data/_save/dog's_breed/"
stt = time.time()
#1. 데이터
train_datagen = ImageDataGenerator(
rescale=1./255,
# horizontal_flip=True,
# vertical_flip=True,
# width_shift_range=0.1,
# height_shift_range=0.1,
# rotation_range=5,
# zoom_range=1.2,
# shear_range=0.7,
# fill_mode='nearest',
)
xy_train = train_datagen.flow_from_directory( #디렉토리의 이미지를 데려다 쓰겠다.
"D:/study_data/_data/dog's_breed/",
target_size=(300, 300), #이 사이즈로 바꿔줭
batch_size=2000,
class_mode='categorical',
color_mode='rgba',
shuffle=True,
)
np.save(save_path + 'dog_breed_x_train500.npy', arr=xy_train[0][0])
np.save(save_path + 'dog_breed_y_train500.npy', arr=xy_train[0][1])
ett1 = time.time()
print('이미지 수치화 소요 시간 :', np.round(ett1-stt, 2))