#<https://www.kaggle.com/datasets/yapwh1208/dogs-breed-dataset>
import numpy as np
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.layers import LeakyReLU, Dropout
from tensorflow.keras.callbacks import EarlyStopping
from sklearn.model_selection import train_test_split as tts
import time
import tensorflow as tf
from tensorflow.compat.v1 import ConfigProto
from tensorflow.compat.v1 import InteractiveSession
config = ConfigProto()
config.gpu_options.allow_growth = True
session = InteractiveSession(config=config)
gpus = tf.config.experimental.list_physical_devices('GPU')
if gpus:
try:
# Currently, memory growth needs to be the same across GPUs
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
logical_gpus = tf.config.experimental.list_logical_devices('GPU')
print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPUs")
except RuntimeError as e:
# Memory growth must be set before GPUs have been initialized
print(e)
#1. 데이터
path = "D:/study_data/_save/dog's_breed/"
stt = time.time()
x = np.load(path+'dog_breed_x_train.npy')
y = np.load(path+'dog_breed_y_train.npy')
ett1 = time.time()
x_train, x_test, y_train, y_test = tts(x, y,
train_size=0.7,
random_state=323,
# stratify=y,
)
#2. 모델구성
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, Flatten, Dense,MaxPooling2D
# model = Sequential()
# model.add(Conv2D(256, (2,2), input_shape=(300, 300, 3),padding='same', activation=Leakyswish(0.9)))
# model.add(MaxPooling2D())
# model.add(Conv2D(128, (2,2),padding='same', activation=Leakyswish(0.9)))
# model.add(MaxPooling2D())
# model.add(Conv2D(64, (2,2), activation=Leakyswish(0.9)))
# # model.add(MaxPooling2D())
# model.add(Conv2D(32, (2,2), activation=Leakyswish(0.9)))
# # model.add(MaxPooling2D())
# model.add(Conv2D(16, (2,2), activation=Leakyswish(0.9)))
# model.add(Flatten())
# model.add(Dense(128,activation='swish'))
# model.add(Dense(64,activation='swish'))
# model.add(Dense(32,activation='swish'))
# model.add(Dense(16,activation='swish'))
# model.add(Dense(5,activation='softmax'))
model = Sequential()
model.add(Conv2D(32, (3, 3), activation='swish', input_shape=(300, 300, 3)))
model.add(Dropout(0.5))
model.add(MaxPooling2D())
model.add(Conv2D(64, (3, 3), activation='swish'))
model.add(Dropout(0.5))
model.add(MaxPooling2D())
model.add(Conv2D(128, (3, 3), activation='swish'))
model.add(Dropout(0.5))
model.add(MaxPooling2D())
model.add(Conv2D(128, (3, 3), activation='swish'))
model.add(Dropout(0.5))
model.add(MaxPooling2D())
model.add(Flatten())
model.add(Dense(512, activation='swish'))
model.add(Dropout(0.5))
model.add(Dense(5, activation='softmax'))
#3. 컴파일, 훈련
model.compile(loss='categorical_crossentropy',
optimizer='adam', metrics=['acc'])
# model.fit(xy_train[:][0], xy_train[:][1],
# epochs=10,
# ) #에러
es = EarlyStopping(monitor='val_acc',
mode = 'max',
patience=30,
verbose=1,
restore_best_weights=True,
)
hist = model.fit(x_train, y_train, epochs=5000, #x데이터 y데이터 배치사이즈가 한 데이터에 있을때 fit 하는 방법
# steps_per_epoch=32, #전체데이터크기/batch = 160/5 = 32
validation_split=0.1,
shuffle=True,
batch_size = 16,
# validation_steps=24, #발리데이터/batch = 120/5 = 24
callbacks=[es],
)
loss = hist.history['loss']
val_loss = hist.history['val_loss']
acc = hist.history['acc']
val_acc = hist.history['val_acc']
# print('loss : ', loss[-1])
# print('val_loss : ', val_loss[-1])
# print('acc : ', acc[-1])
# print('val_acc : ', val_acc[-1])
ett = time.time()
print('로드까지 걸린 시간 :', np.round(ett1-stt, 2))
print('연산 걸린 시간 :', np.round(ett-stt, 2))
# from matplotlib import pyplot as plt
# plt.subplot(1,2,1)
# plt.plot(loss,label='loss')
# plt.plot(val_loss,label='val_loss')
# plt.legend()
# plt.subplot(1,2,2)
# plt.plot(acc,label='acc')
# plt.plot(val_acc,label='val_acc')
# plt.legend()
# plt.show()
from sklearn.metrics import accuracy_score
result = model.evaluate(x_test,y_test)
print('result :', result)
pred = np.argmax(model.predict(x_test), axis=1)
y_test = np.argmax(y_test,axis=1)
acc = accuracy_score(y_test, pred)
print('acc:',acc)