import pandas as pd
from tensorflow.keras.models import Sequential, Model
from tensorflow.keras.layers import Dense, Input
def m1():
input1 = Input(1)
dense1 = Dense(3)(input1)
dense2 = Dense(2)(dense1)
output1 = Dense(1)(dense2)
model = Model(inputs=input1, outputs=output1)
model.layers[0].trainable = False # hidden1
pd.set_option('max_colwidth', -1)
layers = [(layer, layer.name, layer.trainable) for layer in model.layers]
# print(layers)
results = pd.DataFrame(layers, columns = ['Layer Type', 'Layer Name', 'Layer Trainable'])
print(results) # 가중치 False
def m2():
input1 = Input(1)
dense1 = Dense(3)(input1)
dense2 = Dense(2)(dense1)
output1 = Dense(1)(dense2)
model = Model(inputs=input1, outputs=output1)
model.layers[1].trainable = False # hidden1
pd.set_option('max_colwidth', -1)
layers = [(layer, layer.name, layer.trainable) for layer in model.layers]
# print(layers)
results = pd.DataFrame(layers, columns = ['Layer Type', 'Layer Name', 'Layer Trainable'])
print(results) # 가중치 False
def m3():
input1 = Input(1)
dense1 = Dense(3)(input1)
dense2 = Dense(2)(dense1)
output1 = Dense(1)(dense2)
model = Model(inputs=input1, outputs=output1)
model.layers[2].trainable = False # hidden1
pd.set_option('max_colwidth', -1)
layers = [(layer, layer.name, layer.trainable) for layer in model.layers]
# print(layers)
results = pd.DataFrame(layers, columns = ['Layer Type', 'Layer Name', 'Layer Trainable'])
print(results) # 가중치 False
def_list = [m1,
m2,
m3]
for d in range(len(def_list)):
if d == 0:
m1()
elif d == 1:
m2()
elif d == 2:
m3()