import numpy as np
from sklearn.datasets import fetch_covtype, load_iris, load_breast_cancer, load_wine, load_digits
import warnings
from sklearn.preprocessing import MinMaxScaler, RobustScaler
from sklearn.svm import LinearSVC
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeRegressor, DecisionTreeClassifier
from sklearn.ensemble import RandomForestRegressor, RandomForestClassifier
warnings.filterwarnings(action='ignore')
from sklearn.metrics import r2_score, accuracy_score
data_list = [load_iris(return_X_y=True),
load_breast_cancer(return_X_y=True),
load_wine(return_X_y=True),
load_digits(return_X_y=True),
]
model_list = [LinearSVC(),
LogisticRegression(),
DecisionTreeClassifier(),
RandomForestClassifier(),
]
data_name_list = ['아이리스 :',
'브레스트 캔서 :',
'와인 :',
'당뇨병 :']
model_name_list = ['LinearSVC :',
'LogisticRegression :',
'DecisionTreeClassifier :',
'RandomForestClassifier :']
#2. 모델
for i,value in enumerate(data_list):
x, y = value #에뉴머레이트 하면 순서가 i 값은 v여서 x, y 는 v로 지정
# print(x.shape, y.shape)
print("=============================================")
print(data_name_list[i])
for j, value2 in enumerate(model_list):
model = value2
#컴파일, 훈련
model.fit(x,y)
#평가, 예측
result = model.score(x,y)
print(model_name_list[j], result)
y_predict = model.predict(x)
acc=accuracy_score(y, y_predict)
print('accuracy_score :',acc)