# [실습] 각종 모델 넣기
import numpy as np
import pandas as pd
from sklearn.datasets import load_iris, load_breast_cancer, load_digits, load_wine, fetch_covtype, fetch_california_housing, load_diabetes
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.utils import all_estimators
from sklearn.ensemble import BaggingClassifier
import warnings
warnings.filterwarnings('ignore')
# 1. 데이터
data_list = [load_iris, load_breast_cancer, load_digits, load_wine, fetch_covtype, fetch_california_housing, load_diabetes]
for i in range(len(data_list)):
x, y = data_list[i](return_X_y=True)
x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=123, train_size=0.8, shuffle=True)
scaler = StandardScaler()
x_train = scaler.fit_transform(x_train)
x_test = scaler.transform(x_test)
# 2. 모델
if i <5:
allalgorithms = all_estimators(type_filter='classifier')
else:
allalgorithms = all_estimators(type_filter='regressor')
for (name, algorithm) in allalgorithms:
try:
model = BaggingClassifier(algorithm(), n_estimators=10, n_jobs=-1, random_state=337, bootstrap=True)
model.fit(x_train, y_train)
y_pred = model.predict(x_test)
# 4. 평가, 예측
print(data_list[i].__name__,name, 'score : ', model.score(x_test, y_test))
print(data_list[i].__name__,name, 'acc : ', accuracy_score(y_test, y_pred))
except:
continue