import tensorflow as tf
tf.compat.v1.set_random_seed(337)
x_data = [[73, 52, 65],
[92, 98, 11],
[89, 31, 33],
[99, 33, 100],
[17, 66, 79]]
y_data = [[152], [185], [180], [205], [142]]
x = tf.compat.v1.placeholder(tf.float32)
y = tf.compat.v1.placeholder(tf.float32)
w = tf.compat.v1.Variable(tf.compat.v1.random_normal([]), name = 'weight')
b = tf.compat.v1.Variable(tf.compat.v1.random_normal([]), name = 'bias')
hypothesis = x * w + b
sess = tf.compat.v1.Session()
sess.run(tf.compat.v1.global_variables_initializer())
print(sess.run([hypothesis, w, b], feed_dict={x:x_data, y:y_data}))