import tensorflow as tf
import numpy as np
from sklearn.metrics import r2_score
tf.compat.v1.set_random_seed(337)
x_data=[[1,2,1,1],
[2,1,3,2],
[3,1,3,4],
[4,1,5,5],
[1,7,5,5],
[1,2,5,6],
[1,6,6,6],
[1,7,6,7],
]
y_data = [[0,0,1], #2
[0,0,1],
[0,0,1],
[0,1,0], #1
[0,1,0],
[0,1,0],
[1,0,0], #0
[1,0,0],
]
#2. 모델구성
x = tf.compat.v1.placeholder(tf.float32, shape=[None, 4])
w = tf.Variable(tf.random.normal([4, 3]), name='weight')
b = tf.Variable(tf.zeros([1, 3]), name='bias')
y = tf.compat.v1.placeholder(tf.float32, shape=[None, 3])
hypothesis = tf.compat.v1.matmul(x, w) + b
#3-1 컴파일
loss = tf.reduce_mean(tf.compat.v1.square(hypothesis - y))
# optimizer = tf.compat.v1.train.GradientDescentOptimizer(learning_rate=1e-5)
# train = optimizer.minimize(loss)
train = tf.compat.v1.train.GradientDescentOptimizer(learning_rate=1e-5).minimize(loss)
epochs = 1000
with tf.compat.v1.Session() as sess:
for step in range(epochs):
sess.run(tf.compat.v1.global_variables_initializer())
_, loss_val, w_val, b_val = sess.run([train, loss, w, b], feed_dict={x:x_data, y:y_data})
# print(w_val[0][0])
# 4. 평가, 예측
xp2 = tf.compat.v1.placeholder(tf.float32, shape=[None, 4])
y_pred = tf.compat.v1.matmul(xp2, w_val) + b_val
y_predict = sess.run([y_pred], feed_dict={xp2:x_data})
print('r2 : ', r2_score(y_data, y_predict[0]))
# r2 : -244.58336231944563
tf17_softmax2